

Creating and Using Real World

Builders – Made Easy

Session rsch1

Richard A. Schummer
President

White Light Computing, Inc.
42759 Flis Dr.

Sterling Heights, MI 48314
Voice: 586.254.2530

Fax: 586.254.2539
E-mails: raschummer@whitelightcomputing.com

rick@rickschummer.com
Web sites: www.whitelightcomputing.com

www.rickschummer.com

Overview
Builders are a handy way to set attributes on objects without opening up the Visual FoxPro
Property Sheet or writing a line of code. How many times a day do you find yourself jumping to
the Property Sheet, moving to the correct tab, and searching down the seemingly endless list to
find that one property that you need to tweak? Dozens, hundreds, or does it just feel like a
thousand? Builders are yet another shortcut to increasing your productivity in ways you may
have not imagined. Right-click on the object, select Builder… from the menu, and let a builder
do the work for you.

Builder technology has been around since Visual FoxPro 3.0, yet to this day when the topic
of builders comes up in conversation amongst developers, it is usually met with blank stares.
There are a number of native builders that ship with Visual FoxPro. Some are cool, some are
okay, while others seem to be a little more than useless. The most important part of this
technology is not the alternative property sheet user interfaces that ship with VFP, but the fact
that they are extendible, even replaceable, and most of all easy to create.

This session will demonstrate builder technology inside of Visual FoxPro, how to leverage
the existing builders (especially the cool ones included in VFP 8 and 9), and create and register
your own builders (traditional and non-traditional ones). We will step through creating several
builders from scratch, using the “old-fashion” builder techniques, using BuilderB techniques,
and finally showing how the data driven BuilderD technique will knock your socks off!

Session attendees will learn how to...
1. What a VFP builder is and how it can increase their productivity.
2. What VFP builders to use and which ones to avoid.
3. How VFP builder technology is integrated into the development environment and how it can

be exploited for their benefit.
4. How to create and register their own builders.
5. How to leverage builder technology without creating a “traditional” builder.
6. What the Builder and BuilderX properties are and how they can be useful.
7. What BuilderB technology is and how they can take advantage of it.
8. What BuilderD technology is and how they can exploit it
9. What are Property Editors and how are they implemented.

Skill Level/Prerequisites
Introductory to Expert developers, session will have something for all levels. Familiarity with
the Form and Class Designer is a must.

What is a builder and why would I use one?
The builder technology was introduced with the debut of Visual FoxPro 3. Similar in some ways
to the wizards that are built into Visual FoxPro, they assist us in various facets of application
development. They are additional tools of our trade that shortcut operations we perform on the
source code that is the foundation of the custom database applications we craft.

A builder is most commonly implemented as a user interface to the properties of an object.
Developers that have used one of the native builders included with Visual FoxPro see the natural
use, which is the extension or replacement of the Property Sheet. You can have a builder create
properties, read the values in existing properties, and set the values in properties. You will see
several examples of this type of builder throughout this whitepaper.

A builder can also read and write code in methods. This may not be apparent if you have
only used the Visual FoxPro native builders that are available when using the Form or Class
Designer. One example of this is the native Referential Integrity builder. It creates stored
procedure code in the database for all the persistent relationships that you enforce a referential
integrity rule. You can have a builder create methods as well. We have several code generation
ideas presented in this whitepaper and demonstrate techniques of how this can be accomplished.

Wizards step you through a process to create something from scratch. Builders can also do
this, but the one thing that distinguishes a builder from a wizard is that builders are re-entrant.
This means that builders figure out what the existing settings are for an existing object and
present those settings to the developer, or leverage those setting to do something.

I want to get the creative juices flowing even more. Think of builders as any tool that does
something to assist you to develop code faster and more efficiently, removes repetitive tasks you
perform, or runs a process that manually takes a lot of time and is performed regularly. Builders
can add objects to a container; remove objects, transfer property settings and code from one
object to another. A builder can write programs, create tables, generate stored procedures (in
VFP and remote data), create reports, and even populate metadata.

A builder can be used to reduce exposure to specific properties and provide a set of valid
settings. This is especially handy when you have new developers in your company or temporary
contractors that need to learn your framework or the exact way you do development. An example
of this situation that I have run into is a small company that used a commercial framework. They
hired developers with little to no Visual FoxPro experience. The new developers could come up
to speed on building forms very quickly following a set of instructions that stepped them through
the entire process of creating a form (minus all the business logic). This made them productive,
but was a manual process that allowed rookie developers to make mistakes. A builder could have
done the majority of the steps and reduced the number of errors.

Custom properties are common in the classes and forms that we create. One of the
disadvantages of custom properties is valid settings cannot be integrated into the Visual FoxPro
Property Sheet (prior to VFP 9). We can do this quite easily using a builder. This is a key benefit
since we often forget what we intended the property settings to be, or want an easy way to
communicate to other developers what values can be assigned to these properties.

The last one I will discuss in this section is that builders can generate code, code headers,
comments, and declare common variables we use like method or function return values. This can
be a tremendous productivity booster.

What are the native builders included in VFP? (Example: BUILDERDEMOVFP8.SCX)

There are 15 native Visual FoxPro Builders that ship with Visual FoxPro 9 (see Table 2). The
Member Data Editor is new in Visual FoxPro 9. The Cursor Adapter, Data Environment, and
XML Web Service builders are all new in Visual FoxPro 8. These are the first builders added to
the product since the Application Builder was added in Visual FoxPro 6.0.

We want to make sure you differentiate builders and wizards. The primary difference is that
the wizards are executed once to get a desired result; builders are re-entrant, meaning that they
read the settings and present information as it already exists on the object. Wizards may have
default values for properties, and will step you through the process of creating what ever it is
designed to create. If you run the wizard again, you can step through the same process, but
nothing you previously created will be used in that process. Builders, if designed correctly, will
read all the settings it is familiar with and present them for the developer to change. Thus you
only need to change the items you want reflected in the object.

Figure 1. This form delineates the various controls that have builders (left side) and those that do not
(right side).

The fundamental way the builders are started is to select the object (or objects) that you want
to build. The context menu (displayed when you right-click on the selected object) will have a
Builder… item. There are other ways to start a builder discussed in the section “How do I access
Builders?”.

Microsoft has obviously not created a builder for each and every object available in Visual
FoxPro. In fact, Visual FoxPro 9 now has a total of 44 baseclasses, (see Table 1) so this means
that there is lots of opportunity for developers to create builders. That said, there are a number of
builders already created that we can leverage to increase our productivity (see Table 2).

Table 1. List of native Visual FoxPro baseclasses

ActiveDoc (deprecated) Custom Label ReportListener
Checkbox DataEnvironment Line Separator
Collection EditBox ListBox Session
Column Empty OleBoundControl Shape
ComboBox Exception OleControl Spinner
CommandButton Form OptionButton TextBox
CommandGroup Formset OptionGroup Timer
Container Grid Page Toolbar
Control Header PageFrame XMLAdapter
Cursor HyperLink ProjectHook XMLField
CursorAdapter Image Relation XMLTable

Table 2. List of Visual FoxPro Native Builders

Builder Description
Application Displays a dialog to simplify creating and modifying forms, reports,

complex controls, similar to the Project Manager. Additionally you can set
up some of the build properties available on the Build Version dialog. If
you are using the VFP provided framework or install the application
builder metadata (almost required) you will have additional functionality.

AutoFormat Displays a dialog that allows you to apply a set of styles to selected
controls of the same type. Styles can be optionally applied to borders,
colors, fonts, layout, and 3D effects.

Combo Box Displays a dialog to set properties for a combo box including the
RowSourceType and RowSource, Style, special effects, use of
incremental searching, number of columns, and how it is bound to data.
Only supports RowSourceType of Array, fields, and none.

Command Group Displays a dialog for you to set properties for a command group. If you
use command groups it definitely simplifies adding addition command
buttons to the group, change captions, and select the layout (vertical or
horizontal), as well as controlling the spacing between buttons.

CursorAdapter Displays a dialog to build CursorAdapter objects quicker than typing all
the settings in the property sheet. (new in VFP 8)

DataEnvironment Displays a dialog to build dataenvironment objects that use the
capabilities of cursoradapter objects. Allows you to select a datasource
(native VFP data, ADO, ODBC, or XML), then add predefined or new
cursoradapter objects. Can call the cursoradapter builder from the
dataenvironment builder. (new in VFP 8)

Edit Box Displays a dialog to set properties for an edit box. There is a plethora of
common format settings to choose, the standard special effect,
bordering, alignment, and the ControlSource

Form Displays a dialog to add fields as new controls to a form. Additionally you
can set the controls to follow any of the VFP provided styles commonly
available in the form wizard.

Grid Displays a dialog to set properties for a grid after selecting the
RecordSource (free or database contained table). You can pick a VFP
wizard based style, adjust column widths, Captions, change the control in
the column, and set up parent child relationship based grids.

List Box Displays a dialog to set properties for a list box including the
RowSourceType and RowSource, Style, special effects, use of
incremental searching, number of columns, and how it is bound to data.
Only supports RowSourceType of Array, fields, and none.

Member Data Editor Displays a dialog to allow developers to edit meta data associated with
class members. Resulting XML metadata is stored in the new
_memberdata property and interpreted in the development environment
to configure the Property Sheet. (new in VFP 9)

Option Group Displays a dialog for you to set properties for an option group. It definitely
simplifies adding addition option buttons to the group, change captions,
and select the layout (vertical or horizontal), as well as controlling the
spacing between buttons. Additionally you can quickly change between
standard and graphical option buttons.

Referential Integrity Helps you to ensure referential integrity of tables by generating trigger

Builder Description
code to control rules on how records are inserted, updated, or deleted in
related tables. Options are based on VFP database and the persistent
relations set up before running the RI builder.

Text Box Displays a dialog for you to set properties for a text box including the
ControlSource, data type, InputMask (with common ones predefined to
select from), the special effects, and other common settings.

XML Web Service Allows you to bind an XML Web service to a control on a Visual FoxPro
form or to an object. One example of how this can be used is a cursor
adapter in the data environment. (new in VFP 8)

All the source code to the builders (as well as wizards and Xbase tools) is included in the

VFP Tools\XSource\ directory in a file named XSource.zip. If you do not find the builders to
your liking you can always change them or customize them to your needs.

What happens if there is no builder for selected object?
In the previous section we listed the 44 baseclasses in Visual FoxPro and noted that there are
only 15 native builders. So odds are pretty good that you will try to bring up a builder for an
object that does not have a registered builder. Visual FoxPro does an admirable job in this
situation by displaying a message box indicating this very situation.

Figure 2. Visual FoxPro will kindly tell you when there are no registered builders available for the control
you selected (either for the specific control/object, or the ALL type builders).

The no builder message is not display if you have the Builder Lock option set (see “Form
Control toolbar builder lock” section later in this whitepaper).

How do I access Builders?
There are several ways to access builders. The most familiar way is to right-click on an object in
the designer and select the builder option from the context menu. Microsoft has included several
ways to run a builder in the development environment.

Control Context Menu
The most common way that a builder is accessed is through the control’s context sensitive menu.
Right-click any control in the Form or Class Designer and select the Builder… menu item. The
appropriate builder will be executed.

Form Control toolbar builder lock
The Form Control toolbar is available when the Form or Class Designer is active. If the Builder
Lock is set, each time you drop a control on a form using the Form Control toolbar, the builder
for that control will be run if one exists. If one does not exist there is no action taken.

Figure 3. The Form Control toolbar Builder Lock is the second from last toolbar button.

The selection of the Builder Lock option is not persistent between designer sessions. If the
designers are closed or the toolbar is manually closed, the Builder Lock selection is turned off.
You will need to re-select it the next time the toolbar is activated.

Form Designer Toolbar
The Form Designer toolbar is optionally displayed when a form or form class is opened. The last
two buttons on this toolbar are the Form Builder and AutoFormat Builder respectively.

Figure 4. The Form Designer toolbar is available when the Form Designer is opened.

Project Builder from Project Manager
The Project Manager might initially sound like an odd place to find hooks for a builder, but there
has been an Application Builder available since VFP 6. The hook to the builder is included in the
right-click context menu.

Figure 5. The context menu for the Project Manager has a Builder… option available to call up the
Application Builder, Web Services Builder or one of your own custom project based builders.

Toolbox
The Toolbox introduced in Visual FoxPro 8 works very similarly to the Form Controls toolbar.
You can drop controls on forms and classes in the native designers. If you want the builder to
run when the control is dropped, you need to make a setting for the Toolbox that indicates this.

There are two ways to accomplish this. The first is to right-click on the Toolbox and select the
Builder Lock context menu item. The second way is to get to the Toolbox’s Customize Toolbox
dialog and select the “Run associated builder” option found on the General Options page.

Figure 6. The Customize Toolbox options dialog has the option of “Run associated builders” on the
General Options page.

Just like the Form Controls toolbar, if there is more than one register builder for the selected
object, you will be presented with a dialog to pick which builder you want to run. The selection
of the Builder Lock option is persistent between Toolbox sessions. So even if you close the
Toolbox, the next time you open the Toolbox, the Builder Lock setting will be the same as what
it was set to the last time you used it.

VFP Options Dialog
The Options dialog (found using the Tools | Options menu item) has a Builder Lock setting on
the Forms page. This is the default behavior for the Form Control toolbar builder lock. This
behavior is stored in the registry if you choose to “Set As Default”.

Figure 7. The Builder Lock is available on the Form page of the Tools | Options dialog.

If this is set on, each time the Form Control toolbar is loaded (when you open the Form or
Class Designer or manually open it via the View menu) the Builder Lock checkbox will default
on. You can override this temporarily, but the next time the Form Control toolbar opens up it
will be back on.

Run it direct from Command Window or menu
There is nothing to stop you from running a custom builder from the Command Window or a
menu. It is not how the native builders work, but this is not a limitation, rather it is just how
Microsoft implemented the native builders. You do not have to register the builder in the builder
registration table (discussed in the section “How does Visual FoxPro implement builder
technology?”). You can run your program, form, app, etc. directly from the Command Window
or add it to a developer menu.

How does Visual FoxPro implement builder technology?
Microsoft implemented a very elegant and highly flexible technology for builders. Simply stated,
each time you select a builder to be run (see section “How do I access Builders?” for all the
various techniques) the builder manager program runs and determines which builder to execute,
or if there is more than one builder to run, present a list to select from. This is implemented in a
fashion that is extendible and if not to your liking, completely replaceable.

_BUILDER and Builder.app
Microsoft provides hooks into all of what it refers to collectively as the “Xbase tools” (called
this because they are written in the VFP language, not C++ like the core product). These hooks
are available with the system memory variables that start with the underscore. In the case of the
builders, the name of the builder manager program is stored in _BUILDER. The default builder
manager is called Builder.app.

What does the builder manager do exactly? Microsoft has made the code to the builder
manager available for us to look at and modify if we choose. I have not seen a reason to write my
own builder manager program since the builder technology Microsoft implemented is quite

flexible. I will not go into great detail about what the builder manager does (since the code has a
ton of error checking and validation), but here is a basic outline on how it works:

• Accepts parameters (possible object reference, origin of the call to the builder [property
sheet, right-click of mouse, or the toolbox], and nine optional parameters to pass along to
the builder)

• Parameter checking, validation, and determination of target object for builder

• Run the builder if directly specified with one of three conditions

• If the name of the builder is passed to the builder manager (third parameter), run
this builder.

• If the object has a BuilderX property, run the builder specified in that property.

• If the object has a Builder property, run the builder specified in that property.

• Return value returned from the builder.

• -OR- run the builder from the registration tables if not directly specified

• Hide the Property Sheet if not docked

• Determine if MULTISELECT or AUTOFORMAT

• Look up list of registered builders

• Display list if more than one to select

• Run the builder selected or run only builder for that object

• Activate the Property Sheet (always done whether builder was run or not)

• Not sure why, but the builder return value is never returned, unlike the specified
builders

There are some interesting concepts that are not apparent unless you read the builder
manager code. If the Builder or BuilderX properties have a value of a question mark (?), the
builder manager will prompt you for the program to run (prg, scx, app). If the Builder or
BuilderX properties have a value of an asterisk (*), the builder manager will set up an object
reference to the selected object in a public memvar called “o” and activate the Command
Window. This allows you to interactively work with the object. We are not sure why all this
effort was given when we can do the same thing with SYS(1270), but it is there for your use.

NOTE:
You can switch between builder managers if you have your own customized version.
All you have to do is change _BUILDER from the current setting to your program.
This can be helpful if you have a customized builder that does not fit the model
developed by Microsoft. You can even toggle between multiple managers if this fits
your needs.

I hope this outline provides you with an understanding of how the builder technology is
implemented internally. I also encourage you to review this code in detail if you have an interest.

The source code can be found in the VFP\Tools\Xsource\VFPSource\Builders directory. It will
also provide you with some key specifications if you decide to build your own builder manager.

The Registration Tables
The list of builders available to the builder manager is stored in two registration tables. If these
tables do not exist, Visual FoxPro will prompt you to locate the table or offer to build a new one
with the default native builders. The tables are in the VFP\Wizards directory.

The first table is the Builder.dbf/fpt. This table holds all the builders except for Project
builders (explained later in this section). You can add records which register new builders. The
structure for this table is specified in Table 3.

Table 3. File layout of the Builder.dbf and Wizard.dbf.

Name Type Description
Name Character (45) This is the name of the builder. This is displayed in the selection

dialog if more than one builder is available for the object selected.
Descript Memo (4) This is the description of the builder. It is text that is displayed at the

bottom of the builder selection dialog that provides the developer
with a bit more information on what the builder is or can do.

Bitmap Memo (4) Not used
Type Character (20) This is the uppercased object baseclass, or identifier of the type of

builder it is. This can be the baseclass for an object, “RI” for the
referential integrity, “ALL” will be available for all objects,
“MULTISELECT” for builders that act on multiple selected objects in
a designer, and “AUTOFORMAT” for builders that work on
formatting multiple objects.

Program Memo (4) This is the program name (fully pathed, relatively pathed, or
available on the VFP path. This is used exclusive of the
ClassLib/ClassName columns.

ClassLib Memo (4) This is the class library that the ClassName resides in. The builder
must reside in this class library to be run.

ClassName Memo (4) This is the class name of the class that is the builder.
Parms Memo (4) Additional parameter(s) to pass to the builder.

Figure 7. This is the entire list of native builders in the Builder.dbf registration table.

Figure 8. This is the entire list of native builders in the Wizard.dbf registration table.

The Project builders reside in the Wizard.dbf/fpt. This is not real obvious, but it is how it
works. If you want to create your own project builder you need to add a record to this table.

How does Visual FoxPro know which Builder.dbf to use? (Example:
CHECKBUILDERREGINFOXUSER.PRG)
Visual FoxPro stores the location of the Builder Registration Table in the FoxUser.dbf resource
file. This information is stored in a record identified with ID = “BUILDERS”. To locate the
record, execute the following code:

USE SYS(2005) AGAIN ALIAS curFoxUser
SET FILTER TO id = "BUILDER"
BROWSE
SET FILTER TO
USE IN curFoxUser

The location details are found in the Data column. It is my experience that this information is
correct most of the time. During product betas the information occasionally points to another
Builder Registration table, or if you share a resource file across different versions of VFP (not
recommended). Altering the data in the Data column is fine. There is no checksum problem by
correcting the pointer to the correct table.

How do I register a custom builder?
Adding your own builder to this table is as simple as APPEND BLANK and filling in the appropriate
columns. I previously documented the tables columns in Table 3. Minimally you need the Name,
Type, and either the Program or the ClassLib/ClassName columns. I also recommend filling in
the Descript column for documentation purposes, especially if you make the builder available to
other Visual FoxPro developers.

Here is a simple program code that registers a builder that resides in a class:

LOCAL lnOldSelect, ;
 lcBuilderName

lnOldSelect = SELECT()
lcBuilderName = "WLC Label Builder"

USE (HOME()+"Wizards\Builder.dbf") AGAIN SHARED ALIAS curRegBuilder IN 0
SELECT curRegBuilder

LOCATE FOR Name = lcBuilderName

IF FOUND()
 * Already registered
 MESSAGEBOX(lcBuilderName + ;
 " was already registered with Visual FoxPro v" + VERSION(4), ;
 0+64, lcBuilderName)
ELSE
 SCATTER MEMVAR MEMO BLANK

 m.Name = lcBuilderName
 m.Descript = "Applies a properties to a label and allows “ + ;
 "alignment with another object."
 m.Type = "MULTISELECT"
 m.ClassName = this.Class
 m.ClassLib = this.ClassLibrary

 INSERT INTO curRegBuilder FROM MEMVAR

 MESSAGEBOX(lcBuilderName + ;
 " has been registered with Visual FoxPro v" + VERSION(4), ;
 0+64, lcBuilderName)
ENDIF

USE IN (SELECT("curRegBuilder"))
RETURN

If the builder is program or application based I would change the code to put the SYS(16, 0)
in the Program column instead of the class and class library in those columns.

There is nothing stopping you to register a builder for multiple objects. For instance, you
might create a builder that will add code to the dataenvironment’s BeforeOpenTable method. It
might make sense to register the same builder as a form builder and a dataenvironment builder.

I create a method for class based builders and a procedure for program based builders called
SelfRegister. In this method I add the code necessary to register the builder in the current version
of Visual FoxPro. Since I have versions as far back as VFP 5, it is nice to be able to have the
builder self register themselves in the appropriate table. It is also a nice feature for builders that I
distribute to other developers in the Fox Community. It might be a good idea to check the
version of Visual FoxPro you are registering your builder in since the builder may require a
specific version to run without errors.

Can I have more than one builder for an object?
You absolutely can have more than one builder for a specific baseclass or set of classes. It is part
of the extensibility of the builder technology included in the product. Visual FoxPro ships with
only one per object (except the Project), but you can add your own builders. When you have
more than one builder registered a dialog is presented for you to select which one you want to
run when you initiate the builder.

This might sound strange, but you will be presented with one of two dialogs when multiple
builders are registered. Most of the time you will be presented with the Builder Selection dialog
except when you run a project builder. You will be presented with the Wizard Selection. The
reason for this is that Microsoft implemented the project based builders in the Wizard.dbf. This
is a bug in my opinion, but by design according to Microsoft. No big deal, just confusing to
those of us who have tried to implement a project builder (see third-party tools section later in
this whitepaper).

Figure 9. The Wizard Selection dialog might not sound intuitive as a Builder Selection dialog, but this is
what is displayed when multiple project based builders are registered.

Figure 10. The Builder Selection dialog is displayed for all other builders that have more than one builder
registered.

NOTE:
One word of caution with respect to naming the builders: it appears that when Visual
FoxPro internally queries the Builder.dbf and Wizard.dbf it applies the distinct clause
on the SQL. If you register two different builders with the same name (builder.name)
the list will only show one.

NOTE:
Another word of caution with respect to deleting the registration of a builder: prior to
Visual FoxPro 9, it appears that when Visual FoxPro internally queries the
Builder.dbf and Wizard.dbf it does so with SET DELETED OFF. If you delete a
builder and do not pack it, it will still show up in the selection dialog. This behavior
was corrected in Visual FoxPro 9.

Which native builders are worthy of regular use?
So what native builders are worthwhile and assist in increasing your productivity? Determining
the worthiness of anything is arbitrary. The criteria I use to make the list of builders that get
regular use is really simple: increased productivity. If I can use a builder to do something faster
than using the Property Sheet or some other manner, then the builder made this list.

Referential Integrity (RI)
The Referential Integrity Builder is the fastest way to build the RI code for a Visual FoxPro
database. It generates code that is not exactly optimized and can write code that will exceed the
64K compiled code barrier (prior to VFP 9), but considering the alternative of writing your own
code it is a good starting point.

I can say without reservation that one of the best developers in the FoxPro Community is
Doug Hennig. He has written a replacement for the standard Visual FoxPro Referential Integrity
Builder. His builder is based on the VFP RI Builder, but fixes a couple of bugs, and integrates
Steve Sawyer’s superior Referential Integrity code (called NEWRI.PRG, available in the Effective
Techniques for Application Development in Visual FoxPro 6.0 book from Hentzenwerke
Publishing and on his website at www.StephenSawyer.com).

NOTE:
More details on the Stonefield RI Builder and the implementation are in a white
paper from Stonefield Group that can be downloaded from
http://stonefield.com/pub/devtools.zip. It is also discussed in more detail later in this
whitepaper in the “What third-party builders are available?” section.

Both the native and Stonefield RI builders present a developer with a list of related tables.
The list is based on the persistent relations set up in the database. You then select how you want
the rules enforced for updating, deleting, and inserting records into the tables.

Figure 11. The Referential Integrity Builder simplifies the creation of trigger code to enforce rules for
updating, deleting, and inserting records into tables.

Option Group

The Option Group object has a number of productivity killers built into the object. First, we
never seem to have just two options so we have to add more options. Once we add them we need
to traverse the Property Sheet to change the Caption properties, and then there is the tedious task
of lining up all the options and make sure they are all evenly spaced.

Figure 12. The Option Group Builder simplifies adding options and determining if the options are
horizontal or vertical.

The Option Group builder actually assists in quickly adding options, and changing the
Captions on the Buttons page. The Layout page allows developers to determine if they want the
options aligned vertically or horizontally, and how many pixels to evenly distribute them.

If you are using Visual FoxPro 8/9, the Option Group Builder respects the MemberClass and
MemberClassLibrary properties used for the option group when adding new option buttons.

DataEnvironment
The DataEnvironment builder productivity is in selecting the datasource. Use the interface to
select the datasource, and the builder makes the corresponding property settings and writes code
in the BeforeOpenTables method

*** Select code: DO NOT REMOVE
set multilocks on
***<DataSource>
This.DataSource = sqlstringconnect([dsn=NorthwindSQL;])
***</DataSource>
*** End of Select code: DO NOT REMOVE

The second page of the builder provides a simplified selection of existing cursor adapters and
the ability to add new cursor adapters. You can add the cursor adapters via the data environment,
but the builder allows you to add cursor adapters that are already created and stored in a visual
class library. If you add them directly from the data environment it will add a baseclass cursor
adapter.

CursorAdapters
The cursor adapter class is a class that offers support for handling a wide range of local or
remote data source as a native VFP cursor. Datasources supported include the following:

1. VFP tables

2. Open Database Connectivity (ODBC)

3. ActiveX Data Object (ADO)

4. Extensible Markup Language (XML)

The builder has nearly all the features that you find when creating a view, but without the
overhead of a database container. This is one builder that is almost indispensable. Yes, you can
create a cursor adapter class and set all the corresponding properties, but it is far more productive
to use the builder.

Figure 13. The CursorAdapter Builder can be called from a cursor adapter in the dataenvironment or
from the Class Designer when editing a cursor adapter.

Member Data Editor
Doug Hennig wrote a little tool to help get you started on the possibilities with _memberdata and
has an article on this topic in the June 2004 issue of FoxTalk 2.0 which will give you all the
details of how this is implemented using the IntelliSense metadata. His discussion includes a
demonstration on how you can extend this architecture to create “property builders”. This tool is
now a builder included in the base product and has been improved significantly since the
FoxTalk article.

Figure 14. The Visual FoxPro Member Data Editor builder is a sure-fire way to simplify the editing of
_memberdata.

The same mixed case is displayed in the editor through IntelliSense.

Figure 15. IntelliSense is even more productive with the inclusion of the mixed case members.

The builder does all the heavy lifting with respect to generating the XML metadata stored in
the _memberdata property.

NOTE:
A word of caution with respect to _memberdata and backwards compatibility with
VFP 8 and earlier: if you create member data that exceeds 255 characters, the
Class Designer and the Form Designer will not be able to edit the class or form with
the extensive member data. VFP 9 can deal with the property values greater than
255 characters, the earlier version have a limitation of 255 characters.

What are the important commands and functions for implementing a
builder?
Visual FoxPro developers often read through the help file to see what commands are available as
they develop custom software for their clients. I am not sure about you, but when I do this I often
come across commands that I wonder about. “How can this be used in a production application?”
Often I realize at some point that these commands are not designed to be used in a custom
application, rather the command is constructed to make developer tools. I have listed several
commands that I often use in builders in Table 4 and why they are useful.

Table 4. A list of Visual FoxPro commands commonly used in builders.

Command Use
ASELOBJ() We see several code examples in this whitepaper that demonstrate how

this function is a centerpiece of almost every builder I have written. It gets
the object reference to the currently selected object(s) in the designer. If
there is more than one object reference, then the collection with the object
references has more than one row. You have to write code specific to the
condition of one object or more than one object. Using ASELOBJ() is the
easiest way to guarantee a reference to the object(s) that the builder
processes.

SYS(1270) This function will get a reference to the object under the mouse. This object
reference could be used by the builder or passed into the builder as the first
parameter. This is a different approach than to use ASELOBJ().

AMOUSEOBJ() See SYS(1270)
WriteExpression /
ReadExpression

These two methods allow a developer to read from and write expressions to
properties that are evaluated at runtime. You can also use the approach to
save and set property settings using the normal assignment code.

WriteMethod /
ReadMethod

These two methods allow a developer to read from and write code to
methods of the object. If the method does not exist and one performs a
WriteMethod, the method is optionally created.

ResetToDefault Just like the interaction with the VFP Property Sheet, a developer can reset
the property or method code so inheritance is no longer broken.

How do I create my own builder?
Implementing builders is fairly easy once you know all the techniques involved. This section
will discuss techniques for the manual creation of a builder using a program and a class.

Writing a builder from scratch has some definite advantages:

• You have more control

• It is easy to integrate into existing VFP builder implementation

• You can write them as a program, class, form, or application

• Customizable without fitting it to predefined architecture

• It can be educational

The disadvantages to creating builders from scratch include:

• More grunt work

• Individual builders for each type of class

Create a class (Example: WLCBUILDERS.VCX:: FRMCHECKBOXBUILDER)
Creating a class is no harder to create than a program, but it provides new challenges when
binding controls to the properties that they will change. The example I have created for this is the
simplest builder I could think up. The checkbox object does not have a native builder so I
thought that might be a good example to tackle. The checkbox builder exposes the AutoCenter,
the Alignment, and the BackStyle properties. Interacting with these objects directly changes the
properties of the target object. These changes are reflected in the designer and the Property
Sheet.

Figure 16. The Checkbox builder example demonstrates how developers can bind controls to the
properties of the object that the builder is working with.

The base code in the builder form (frmCheckboxBuilder) is in the Load() event method:

ASELOBJ(thisform.aChange)

IF VARTYPE(this.aChange[1]) # "L"
 IF LOWER(this.aChange[1].BaseClass) = "checkbox"
 this.Caption= this.aChange[1].parent.Name + "." + ;
 this.aChange[1].Name + " - " + this.Caption
 ELSE
 MESSAGEBOX("Object selected is not a checkbox.", ;
 0 + 16, ;
 "Checkbox Builder")
 RETURN .F.
 ENDIF
ELSE
 MESSAGEBOX("No object selected for this builder.", ;
 0 + 16, ;
 "Checkbox Builder")
 RETURN .F.
ENDIF

RETURN .T.

This code gains a reference to the currently selected object in the Form or Class Designer.
The first check is to see if a reference to an object was obtained and then checks to see if the
object is a checkbox. If it is, the builder form caption property is changed to reflect the name of
the target object that the builder is run against. This is all the necessary code in the builder. The
code in the Init method is only for demonstration purposes.

The user interface controls have the ControlSource property bound to the object reference
stored in the form array property called aChange[]. The three controls are bound like this:

thisform.chkAutosize.ControlSource = "thisform.aChange[1].AutoSize"
thisform.cboAlignment.ControlSource = "thisform.aChange[1].Alignment
thisform.cboBackStyle.ControlSource = "thisform.aChange[1].BackStyle

That is all there is to setting up a simple builder. First gain the reference to the object,
establish this reference in the Load method, and bind the controls to the properties of the object.

Write a program (Example: GENPROJECTHOOK.PRG and BEFOREOPENTABLESCODEBUILDER.PRG)
Most developers think of builders as a form with objects to interact and set properties. This does
not have to be the case. The ASELOBJ() function gains the object references in the designer for a
form interface, but it gains the object references for any selected objects in the foremost
designer.

One example is to programmatically subclass an object and set properties.

Listing 1. This is a partial listing of the GenProjectHook program.

#DEFINE ccPROJECTHOOKSLIB "D:\pres\FishingWithProjectHook\ cPhkDevelopment"
#DEFINE ccPROJECTHOOKSBASE "phkCompanyStandard"

CREATE CLASS (tcProjectHook) OF ccPROJECTHOOKSLIB ;
 AS ccPROJECTHOOKSBASE FROM ccPROJECTHOOKSLIB NOWAIT

* Set the class property for the projecthook cFieldMappingCategory property
ASELOBJ(laProjectHookRef, 1)

IF TYPE("laProjectHookRef[1]") = "O"
 laProjectHookRef[1].cFieldMappingCategory = tcProjectFieldMappingConfig
ENDIF

* Make sure the reference to the projecthook is released
RELEASE laProjectHookRef

* Handle the VFP Windows that open with no Resource File
IF WEXIST("PROPERTIES")
 RELEASE WINDOW "Properties"
ENDIF

IF WEXIST("FORM CONTROLS")
 RELEASE WINDOW "FORM CONTROLS"
ENDIF

* Close the newly created class opened in Class Designer
* The keystrokes are "buffered" until all classes are created
KEYBOARD '{CTRL+W}'

* Added to close the class designers down
DOEVENTS()

Creating the class opened the Class Designer. Therefore ASELOBJ() got a reference to the
projecthook that was created. Using this reference I can manipulate a property and even write
code to a method if that was desired.

The next example writes code in the BeforeOpenTables method of a dataenvironment that
calls a form method. The form method that is called (SetDbc) changes the database property of
each cursor in the dataenvironment. The code is written to the BeforeOpenTables method only if

the form has the SetDbc method and only if the call is not already in the BeforeOpenTables
method.

This particular builder runs in several modes. The code is lengthy, so only parts of the
program are include here. This builder can be run from the dataenvironment, it can be run from a
form, or it can be run from the Command Window. The builder code uses all three modes of
ASELOBJ().

If the builder recognizes it is called from the form it will get a reference to the
dataenvironment. It needs this reference so it can write the code to the method. If the builder
recognizes it is called from the dataenvironment it will get a reference to the form so it can check
that the SetDbc method exists before we write code in the BeforeOpenTables method. The
builder gets the reference to the form and dataenvironment in the following code:

Listing 2. This is a partial listing of the BeforeOpenTablesCodeBuilder program. This section of code
grabs the needed references to the form and dataenvironment.

* Get possible reference to current select object
lnResult = ASELOBJ(laObjects, 1)

IF lnResult = 1
 DO CASE
 CASE LOWER(laObjects[1].BaseClass) = "form"
 * Have a form, get reference to DE
 lnResult = ASELOBJ(laDEObject, 2)
 llMethodUpdated = UpdateBeforeOpenTablesMethod(laObjects[1], ;
 laDEObject[1])
 CASE LOWER(laObjects[1].BaseClass) = "dataenvironment"
 * Have DE, get reference to the form
 lnResult = ASELOBJ(laFormObject, 3)
 llMethodUpdated = UpdateBeforeOpenTablesMethod(laFormObject[1], ;
 laObjects[1])
 OTHERWISE
 * Incorrect object
 MESSAGEBOX("The object selected was not a form or dataenvironment, "+;
 "which this builder is designed to process.", ;
 0 + 16, _screen.Caption)
 ENDCASE
ELSE
 * Check to see if the builder was called from Command Window
 * with a project open to process.
…
ENDIF

If the code is called from the Command Window the first ASELOBJ() will return a zero since
no object is selected for the builder. This forces the builder to check to see if a current project is
opened. If one is opened the builder prompts the developer to see if they want all the forms in the
project to be processed for this additional code.

Listing 3. This is a partial listing of the BeforeOpenTablesCodeBuilder program. This section of code
grabs the needed references to the form and dataenvironment.

FOR EACH loFile IN _vfp.ActiveProject.Files
 IF loFile.Type = "K"
 MODIFY FORM (loFile.Name) NOWAIT
 lnResult = ASELOBJ(laFormObject, 1)
 lnResult = ASELOBJ(laDEObject, 2)
 llMethodUpdated = UpdateBeforeOpenTablesMethod(laFormObject[1], ;

 laDEObject[1])

 IF llMethodUpdated
 lnUpdated = lnUpdated + 1
 ELSE
 lnNotUpdated = lnNotUpdated + 1
 STRTOFILE(loFile.Name, ccLOGFILE, .T.)
 ENDIF

 * Handle the VFP Windows that open with no Resource File
 IF WEXIST("PROPERTIES")
 RELEASE WINDOW "Properties"
 ENDIF

 IF WEXIST("FORM CONTROLS")
 RELEASE WINDOW "FORM CONTROLS"
 ENDIF

 * Close the form opened in Form Designer. The keystrokes are
 * "buffered" windows events until all forms are modified
 KEYBOARD '{CTRL+W}'

 DOEVENTS
 ENDIF
ENDFOR

Each form is opened in the designer via the MODIFY CLASS command. This allows the builder
to get a reference to the form and dataenvironment via ASELOBJ() function. All three of these
methods call the UpdateBeforeOpenTablesMethod and pass along the reference to the form and
dataenvironment. This function performs all the validation to insure the method exists on the
form, and that the code is not already in the BeforeOpenTables method. If all the checks pass, the
builder writes the code via the WriteMethod method.

Listing 4. This is a partial listing of the BeforeOpenTablesCodeBuilder program. It updates code in the
BeforeOpenTable method for each form it process.

FUNCTION UpdateBeforeOpenTablesMethod(toForm, toDE)

LOCAL lcDocMethod, ;
 lcExistingMethodCode, ;
 lcDeveloperLogin, ;
 loForm

lcDocMethod = "BeforeOpenTables"
lcExistingMethodCode = SPACE(0)
lcDeveloperLogin = LOWER(SUBSTRC(SYS(0), ATC("#", SYS(0)) + 2))

IF PEMSTATUS(toForm, "SetDBC", 5)
 IF LOWER(PEMSTATUS(toForm, "SetDBC", 3)) # "method"
 * No need to call a method that does not exist
 RETURN .F.
 ENDIF
ELSE
 * No need to call a method that does not exist
 RETURN .F.
ENDIF

IF PEMSTATUS(toDE, lcDocMethod, 5)
 lcExistingMethodCode = toDE.ReadMethod(lcDocMethod)
 lcExistingMethodCode = IIF(EMPTY(lcExistingMethodCode), SPACE(0), ;
 ccCRLF + ccCRLF) + ;

 lcExistingMethodCode
ELSE
 * Not a native DataEnvironment or does not have a BeforeOpenTables
 RETURN .F.
ENDIF

SET TEXTMERGE OFF
TEXT TO lcNewMethodCode NOSHOW
* <<lcDeveloperLogin>> <<DATE()>>, added via the G2 BeforeOpenTable Code Bdr
thisform.SetDBC()
ENDTEXT

IF "thisform.setdbc()" $ LOWER(lcExistingMethodCode)
 * Call arlready exists
 RETURN .F.
ELSE
 * Add the code to the existing code since it is not in the method
 * Add before the existing code to avoid a trailing RETURN statement
 toDE.WriteMethod(lcDocMethod, ;
 TEXTMERGE(lcNewMethodCode) + ;
 lcExistingMethodCode, .F.)
 RETURN .T.
ENDIF

ENDFUNC

The following code demonstrates how a developer can register a builder using the
registration table and how a builder can be registered for multiple object types. In this case the
builder makes sense to be run from the form or for the form dataenvironment, so it is registered
for both. Another key aspect to recognize in this code is that it stores SYS(16, 0) into the
Program column with the full path so no matter what the default directory the developer is in, the
builder will run.

Listing 5. This is the SelfRegister function of the BeforeOpenTablesCodeBuilder program. It registers
this builder in the Builder.dbf as a form builder and as a dataenvironment builder.

FUNCTION SelfRegister()

LOCAL lnOldSelect, ;
 lcBuilderName, ;
 llAlreadyRegistered, ;
 llRegistered

lnOldSelect = SELECT()
lcBuilderName = "G2 BeforeOpenTables Builder (thisform.SetDbc())"
llAlreadyRegistered = .F.
llRegistered = .F.

USE (HOME()+"Wizards\Builder.dbf") AGAIN SHARED ALIAS curRegBuilder IN 0
SELECT curRegBuilder

* Register as a Form Builder
LOCATE FOR Name = lcBuilderName AND Type = "FORM"

IF FOUND()
 llAlreadyRegistered = .T.
ELSE
 SCATTER MEMVAR MEMO BLANK

 m.Name = lcBuilderName
 m.Descript = "Adds a call in the BeforeOpenTables() method to " + ;

 thisform.SetDBC() if it exists."
 m.Type = "FORM"
 m.Program = SYS(16, 0)

 INSERT INTO curRegBuilder FROM MEMVAR
 llRegistered = .T.
ENDIF

* Register as a DataEnvironment Builder
LOCATE FOR Name = lcBuilderName AND Type = "FORM"

IF FOUND()
 llAlreadyRegistered = .T.
ELSE
 SCATTER MEMVAR MEMO BLANK

 m.Name = lcBuilderName
 m.Descript = "Adds a call in the BeforeOpenTables() method to " + ;
 "thisform.SetDBC() if it exists."
 m.Type = "DATAENVIRONMENT"
 m.Program = SYS(16, 0)

 INSERT INTO curRegBuilder FROM MEMVAR
 llRegistered = .T.
ENDIF

IF llRegistered
 MESSAGEBOX(lcBuilderName + " has been registered with Visual FoxPro v" + ;
 VERSION(4), ;
 0+64, lcBuilderName)
ELSE
 IF llAlreadyRegistered
 MESSAGEBOX(lcBuilderName+" was already registered with Visual FoxPro v";
 + VERSION(4), ;
 0+64, lcBuilderName)
 ENDIF
ENDIF

USE IN (SELECT("curRegBuilder"))
SELECT (lnOldSelect)
RETURN

ENDFUNC

This particular builder was used on three projects with nearly 300 forms. If we changed each
manually it would have taken days. I wrote the builder in a couple of hours and it takes very little
time to run the builder for each of the projects. This was a huge time saver for both us and the
customers. It is a fairly simple builder conceptually, but the code is fairly sophisticated because
of the various modes that it can be run.

What are the Builder and BuilderX properties? (Example: BUILDERDEMOVFP8.SCX,
DEMO.VCX::FRMCHECKBOXBUILDER)
You can add a custom property called Builder and BuilderX to all classes (hopefully at the
highest level of you’re your class hierarchy). The native builder technology will use the setting
in this property to run the builder designated. The property can be set to a program or a class
library/class name combination separated by a comma. VFP will use this as the builder and
ignore all the builders registered in the BUILDER.DBF table for that object.

Figure 17. This example shows the class with the custom BuilderX property.

Doug Hennig explains this as well as I have heard anyone explain these two properties –
“You can create custom Builder and BuilderX properties in your classes (even in your base
classes) and then fill them in with the name of the appropriate builder for each specific class. The
reason for having two properties is that BuilderX specifies a custom builder for the specific
class, while Builder is intended for a builder for a set of common classes such as all comboboxes
or grids.”

You will also see in the BuilderB and BuilderD sections that the Builder and BuilderX
properties are important for the implementation these builder frameworks.

How do I implement a builder using BuilderB? (Example:
BUILDERBEXAMPLE::FRMEDITBOXBUILDERB, FRMSPINNERBUILDERB, FRMSHAPEBUILDERB, FRMLABELBUILDERB)
BuilderB is a technology originally developed by Ken Levy back in 1995 while he worked at
Flash Creative Management and before he went to work at Microsoft. It is called BuilderB
because it is a “Builder-Builder”. It is a framework set of classes that allow developers to rapidly
develop builders. Each builder starts with a form that is a subclass of the base BuilderB form.
You add controls to the subclassed form for each property you want to maintain. This is faster
than developing a completely new builder form from scratch each time because the base form
and controls have builder intelligence already coded. As we will see stepping though some
examples, it still can be tedious and time consuming, but faster in most cases than building
something from scratch.

The advantages of writing a builder using BuilderB include:

• Framework removes some of the grunt work

• Consistent user interface

• Extendible

• Easy to learn

• Easy to integrate into VFP

There are definitely some disadvantages to using BuilderB:

• Need to create a builder for each class or set of classes (which is more code exposure and
maintenance than a framework like BuilderD)

• Need to learn framework

NOTE:
All of the classes necessary to build a BuilderB builder are included in the
BUILDERB.VCX class library (see Figure 18). This class library is available on several
websites on the web including the UniversalThread. I have included it in the
whitepaper downloads for your convenience.

NOTE:
All the BuilderB examples can be demonstrated by running the BuilderBDemo form
available in the whitepaper downloads.

The first thing you will want to do is become familiar with the classes available in the
BuilderB framework (see Figure 18). There are three groups of classes to be concerned with. The
first is the BuilderForm and the associated subclasses. The BuilderForm is the class you will start
with to create your builders. The subclasses of this form are pre-constructed builders for forms,
properties (based on the checkbox, textbox, and editboxes), and captions. The second group is
the BuilderCommandbutton and the associated subclasses. The buttons are used on the
BuilderForm to provide standard functionality for all BuilderB builders. The third group of
classes is a set of controls that you can use to expose properties of the object. The user interface
controls include a checkbox (BuilderCheckbox), editbox (BuilderEditBox), label (BuilderLabel),
pageframe (BuilderPageframe), and textbox (BuilderTextbox). These have the intelligence to
bind to properties of the selected control. Each of these base controls has a BuilderB builder.
You can also add other controls if the need arises (an example of this is in the
frmEditboxBuilderB example class).

Figure 18. The BuilderB.vcx contains all the classes necessary to start creating BuilderB builders.

Once you determine that you have a need for a builder for a particular object, creating the
builder follows a few straightforward steps. The recipe to create a BuilderB builder is this:

Determine the properties you want exposed on the builder and the type of user interface
controls that you want to use to expose these properties.

Create a class based on the BuilderForm via the CREATE CLASS command, the File | New
dialog, or the new class button in the Class Browser or Project Manager. (see Figure 19)

Add the user interface control for a property. The easiest way is to open the BuilderB class
library in the Class Browser or the Project Manager. You can edit the page of the pageframe on
the builder form and then drag and drop controls from the Project Manager or Class Browser. If
you are using VFP 8 you can use the new Toolbox to do the same thing. You can add base VFP
controls as well if they are ones not included in the BuilderB class library.

If the control you dropped on the builder is one from the BuilderB class library, you can run
the BuilderB builder for that control (see Figure 20). If you used a control that is not from the
BuilderB class library, but it has a builder, you can do the same. If you prefer, you can make
changes to properties and methods using the Property Sheet as well.

Repeat steps 3 and 4 until you have a user interface control for each property you want
exposed and have implemented the behavior for each.

Specify the builder for the objects that the builder is implemented.

Figure 19. The first thing you need to do when creating a BuilderB builder is to subclass the BuilderForm
class.

The BuilderB controls are bound to the object properties via the cProperty property. This can
be set in the Property Sheet or via the builder for the control. You cannot set the ControlSource
because the target object reference for the builder does not get set until the after the form’s Init
method runs. Each of the controls on the builder are bound after the target object reference gets
set.

Figure 20. The BuilderB controls are bound to the property by setting cProperty, not through the
ControlSource.

Figure 21. The sometimes mind-boggling concept of running a BuilderB builder when building an object
on another BuilderB builder is something that will become quite common.

The BuilderB builders are normally called via the Builder or BuilderX property setting of the
object. In the case of the editbox builder example, you can see that the Builder property is set to
“BuilderBExample.vcx, frmEditBoxBuilderB”.

The frmSpinnerBuilderB and frmLabelBuilderB builders demonstrate basic property binding
to textbox and checkbox objects. They are very simple builders that show how a developer can
expose specific properties that are commonly changed for a control. In this case the spinner and
keyboard high and low values are available so the developer does not have to hunt them down in
the Property Sheet.

Figure 22. The spinner control builder demonstrates exposing common properties so developers do not
have to find them in the Property Sheet.

The frmEditboxBuilderB builder demonstrates how you can extend the base functionality
provided by the base BuilderForm and the controls found in the BuilderB class library. The form
demonstrates how you can add comboboxes to the builder. This is no small task if you have not
tried this before. You need to understand how to bind to the target object reference. It also
demonstrates that you can add functionality to the builder without binding the user interface to a
specific property. The Default Preference button will set several properties all at once. The first
attempt I made at this was to change the Value properties of the controls on the page. This did
not work because the form has a timer that does an automatic Refresh which gets in the way.
Therefore I changed my approach to change the object properties directly. There are more details
in the “What is the object reference to bind if I am not using a BuilderB control?” section later in
this whitepaper.

What do the buttons at the top of the BuilderB builder do?
One of the nice things about working with a builder framework like BuilderB is that someone
else added base functionality to the builder form. In the case of the BuilderB framework, we
have seven buttons along the top of the form that extend the builder (see Figure 23). It is on all
BuilderB builders since the button set is on the BuilderForm class, and this is the class that is
used to create a new builder.

The first button closes the builder despite the fact that the icon looks very similar to the open
icon used in Visual FoxPro and other programs. You can also use the close button in the upper
right corner of the form without losing any changes you make to the target object properties. The
second button is the Save as Class. You can save the current target object as a class in a class
library.

The third button opens up the Class Browser with the class library of the object that the
target object is based on. Naturally you cannot open up the class that the target object is based on

since the target object is instantiated in the designer. Once the Class Browser is opened you can
close the builder and the designer and then edit the class.

Figure 23. All the BuilderB builders will have this toolbar with base functionality since it is defined on the
BuilderForm class.

The fourth button (three shapes) opens up the add-in dialog if there is registered add-ins for
the builder. The fifth button (trowel and bricks) brings up optional builders registered in the
BUILDER.DBF file. This allows developers to use both their custom builder specified for the
object, and then have access to any other builder registered, including the native Visual FoxPro
builders. The sixth button is a graphical checkbox and is the push pin that toggles the form’s
always on top state. The last button is basic help (question mark) and brings up a text file with
some fundamental help for BuilderB.

What is the object reference to bind if I am not using a BuilderB control?
The BuilderB class library contains a checkbox (BuilderCheckbox), editbox (BuilderEditBox),
label (BuilderLabel), pageframe (BuilderPageframe), and textbox (BuilderTextbox). Each of
these controls has a cProperty property that the control gets bound after the builder determines
the target object. What happens if you want to add a combobox? What is the object reference and
property bound to?

The BuilderForm has property called oObject. If you want to bind a control you need to set
the ControlSource to “thisform.oObject.” plus the property name that you want the control to be
bound. You need to set this in the form’s Init method after a call to DODEFAULT(). Here is a code
example from the frmEditBoxBuilderB form:

LPARAMETERS toObject,tuSource,tlSkipSearch

DODEFAULT(toObject,tuSource,tlSkipSearch)

WITH this.pgfBuilder.fpgPage1
 .cboScrollbars.ControlSource = "thisform.oObject.Scrollbars"
 .cboSpecialEffect.ControlSource = "thisform.oObject.SpecialEffect"
 .cboFontName.ControlSource = "thisform.oObject.FontName"
ENDWITH

RETURN

What do you have to do to run a BuilderB builder via Builder.app?
The BuilderB builders normally are run via the Builder or BuilderX property. You can modify
your builder if you want to register them as classes in the Builder.dbf registration table. The
frmShapeBuilderB example form found in the BuilderBExample class library is set up to do this.
The advantage of this approach is so you can have the builder available to all objects, not just the
objects that specify the builder in the Builder or BuilderX property.

The key to solving this problem is to recognize that the default parameters sent from the
builder manager program (defaults to Builder.app, stored in _BUILDER) do not match the
parameters statement of the builder form. A builder that processes through the builder manager
receives three parameters. They are: “wbReturnValue”, a null string, and another null string. A

builder called via the Builder and BuilderX properties has the parameters: a reference to the
target object (toObject), the method it was called (tuSource), and a logical to determine if the
object reference needs to be determined by the builder (tlSkipSearch). So you can see the
mismatch in data types and complete meaning. Adding code to the builder’s Init method to
“translate” the parameters will allow the builder to run both ways.

LPARAMETERS toObject,tuSource,tlSkipSearch

* RAS 30-Mar-2003, Discovery!
* Handle issues with calling this through the normal
* Builder.APP call (via the Builder registration table).
IF VARTYPE(toObject) == "C"
 toObject = .NULL.

 * Need to run this form modal since the builder manager
 * does not handle this automatically, and BuilderB
 * is a modeless builder tool
 this.WindowType = 1
ENDIF

IF VARTYPE(tlSkipSearch) # "L"
 * This setting allows the builder to gain reference to
 * the target object
 tlSkipSearch = .F.
ENDIF

* Now call the superclass code with possibly corrected parameters
DODEFAULT(toObject,tuSource,tlSkipSearch)

* Bind the non-BuilderB comboboxes
WITH this.pgfBuilder.fpgPage1
 .cboBackStyle.ControlSource = "thisform.oObject.BackStyle"
 .cboSpecialEffect.ControlSource = "thisform.oObject.SpecialEffect"
ENDWITH

RETURN

The builder is registered in the BUILDER.DBF in the same fashion as a regular builder. For
more details on how this is done, see the section “How do I register a custom builder?” earlier in
this whitepaper.

How do I implement a builder using BuilderD?
As fast as BuilderB made development of builders, it was replaced by a newer builder
technology, the third generation of builder technology called BuilderD (for “Dynamic”, but I like
to think of it as “Data”). It has been included in Visual FoxPro since VFP 6. This builder
technology is data driven using some metadata stored in the BuilderD table
(VFP\WIZARDS\BUILDERD.DBF). The builder form looks very familiar if you have spent any time
with the BuilderB framework. Coincidentally, this framework was written by Ken Levy as well.

The advantages of using BuilderD over other builder technologies include:

• Framework removes the grunt work

• Consistent user interface

• Least code exposure of all techniques since it is data driven

• Extendible

• Built into VFP

The disadvantages:

• Need to learn framework (metadata is complex)

• Least Flexible

• Additional implementation headaches (distribution of metadata)

First we need to understand a little about the metadata table that contains the records that
drive the BuilderD builders. The metadata is fairly complex, but it is only data. Once you
understand the implementation you will see the flexibility and the drawbacks involved in writing
a BuilderD builder.

So the question begs: How do I start to learn how the BuilderD data is implemented to create
my own builders? I think you will find the easiest way is to see one in action. It just so happens
that many of the Fox Foundation Classes (FFCs) included with Visual FoxPro have BuilderD
builders. One way to get at the FFCs is to use the Component Gallery and drill down to the
Visual FoxPro Catalog and one more level to the Foundation Classes.

The example I am going to use here is the simplest example, the _HyperlinkLabel FFC
(found in the Internet folder). Open up the class and run the builder. This will bring up the
BuilderD builder (see Figure 24).

Figure 24. The BuilderD builder for the Fox Foundation Class _HyperlinkBase shows three properties
exposed via the metadata.

There are four metadata records associated with this builder.

Table 5. Records in BUILDERD.DBF for the _HyperlinkBase class.

Type Id Links Text Member
CLASS _HyperLinkBase cTarget

cFrame
lNewWindow

PROPERTY cFrame Frame: cFrame
PROPERTY cTarget Target URL: cTarget
PROPERTY lNewWindow Open new browser window lNewWindow

The builder is started because the BuilderX property of the class is set to
"=HOME()+"Wizards\BuilderD,BuilderDForm". The BuilderDForm resides in the BuilderD
class library. This form has all the intelligence in it to read the BuilderD table and populate the
builder user interface.

I have a couple of observations after reviewing the metadata. The first is that there are two
types of records in the metadata, classes and properties. The Id field uniquely identifies the
record in the table. This identifier is used to hook up with “records” identified in the Links
column. In the _HyperlinkBase class, we have three links. If the link has a corresponding
“property” record (based on Type column), the property record defines a user interface element
on the builder. If there is no corresponding record, it is assumed that the link corresponds to a
property on the target object and a textbox is instantiated for the property. The Member column
defines the property that the control will be bound. Confused yet? Like I noted earlier, this is a
bit complex and could take some time to get your head around it.

Figure 25. The _HyperlinkBase shows several properties exposed in the Property Sheet including the
cFrame, cTarget, and lNewWindow.

So how does the Class record get looked up by the BuilderDForm? When the builder is
called, the BuilderD logic looks at the target object, determines the class name and library and
looks up the record based on this combination in the ClassName and ClassLib columns. This
record will define the Links. Each of the links is looked up in the BuilderD table. If found the
property is bound to the control as defined in the property record. All the columns in the
BuilderD metadata table are described in Table 6.

Table 6. File layout of the BUILDERD.DBF.

Field Type Description
Type C(12) Record type. Set to “CLASS” if the record is for a class that the builder will

be instanced. “PROPERTY” if the record indicates a user interface object
that will be instantiated on the builder for the specific property.

Id C(24) Record identifier. Microsoft typically will set this to the class name of the
class that the builder is designed for, which is self documenting. It can be
set to anything as long as it is unique (not enforced at the table level since
it is a free table).

Links M This is literally a set of links to other records (Type = “PROPERTY”)
defined by the Id column, separated by a carriage return. Typically this
column is a list of properties that are exposed on the builder user
interface. If there is no specific property record the property is exposed in
a text box unless it is a logical property.

Text M This is the caption displayed for the property on the builder user interface
when Type = “PROPERTY”, and the builder form caption when Type =
“CLASS”

Desc M Description used on the status bar if running with SET STATUS BAR ON.
Classname M If Type = “CLASS”, the column indicates the class that the builder is

executed to expose properties. This cannot be blank if the Type =
“CLASS”.

If Type = “PROPERTY”, this is the class used to present the property on
the builder form. This can be left blank and a default object will be
instantiated from the BuilderD.vcx. If you decide to customize your own
classes, make sure they are subclassed from the classes in the
BuilderD.vcx.

Classlib M If Type = “CLASS”, the column indicates the class library that the builder is
executed to expose properties. If it is blank, the specified class in the
ClassName column can reside in any class library.

If Type = “PROPERTY”, and this field is blank and ClassName is
specified, BUILDERD.VCX is assumed, otherwise this is the class library
that the class specified in the ClassName field is located.

NOTE: You can specify the class library as an expression if you include
the entire value with parenthesis. This is a common practice for Fox
Foundation Classes that have BuilderD based builders. An example of this
is:
(HOME() + “WIZARDS\BUILDERD.VCX”)

Member M If the Type = “PROPERTY” this is the member (property) that is
maintained via the builder. If it is blank the member is determined by the Id
column.

It should be empty if the Type = “CLASS”.

Helpfile M Name of the HTML help file (CHM). If it is blank it will use the current help
helpfile defined by SET HELP

HelpId M This is the help id that indexes into the help file.
Top N(6,0) This is the Top property of the object used to expose the property. If zero,

the object is placed just below the previously instantiated property object.
Left N(6,0) This is the Left property of the object used to expose the property. If zero,

the object is placed on the left side on the page that the object is
instantiated on.

Height N(6,0) This is the Height property of the object used to expose the property. If
zero, the object default Height is used.

Width N(6,0) This is the Width property of the object used to expose the property. If
zero, the object default Width is used.

RowSrcType N(1,0) If the object used to expose the property is a combo box, then this is the
RowSourceType property for that object.

Rowsource M If the object used to expose the property is a combo box, then this is the
value of the RowSource property for that object.

Style N(1,0) If the object used to expose the property is a combo box, then this is the
value of the Style property for that object.

Validexpr M This is the expression that is evaluated when the property is validated.
Readonly L Make this .T. if you want the object that exposes the property made

ReadOnly on the builder.

Field Type Description
Updonchng L Make this .T. if you want the object value written to the object’s property as

it’s changed from the InteractiveChange method.
Updated T(8) This is the date/time value the record was updated. Must be set manually

since this is a free table and is not used by builder technology (BuilderD).
Comment M This is free form comments that developers can use for their own needs.
User M Standard metadata User field that developers can leverage for their own

needs.

I have added a couple of class and three property records to my BuilderD table for the

whitepaper examples. These records are specified in Table 7.

Table 7. Details “class” records added to the BuilderD.dbf for an editbox class called edtBase and a
commandbutton called cmdBase.

Id Links ClassName ClassLib
edtBase BackStyle

AllowTabs
IntegralHeight
BuilderX
MouseIcon

edtBase D:\Presentations\SouthwestFox2004\BuildersMadeEas
y\Examples\demo.vcx

cmdBase Default
Cancel
WordWrap
cCaptionWide
cPictureProperty
nPicturePosition

cmdBase D:\Presentations\SouthwestFox2004\BuildersMadeEas
y\Examples\demo.vcx

Table 8. Details “property” records added to the BuilderD.dbf for cmdBase links.

Id Member Text Other Columns
cCaptionWide Caption Caption: Width = 200

UpdOnChg = .T.
cPictureProperty Picture Picture: Width = 300
nPicturePosition PicturePosition Picture Position: Style = 2

RowSrcType = 1
RowSource = 0,1,2,3,4,5,6,7,8,9,10,11,12,13

Figure 26. The results of the BuilderD metadata changes on the builder user interface for the cmdBase
classes.

All of the links in the edtBase are properties of the object, not pointers to the property type
records in the metadata. In literally minutes I can create a builder for any custom class I develop
without writing a line of code if this is the case. Talk about enhancing productivity.

Unfortunately the likelihood of all properties being presented in a textbox is low. So we have
to create property records for all the properties that do not fit the mold of the default textbox.
One limitation we have noticed is that comboboxes created with the Style, RowSrcType, and
RowSource columns do not create multiple column combos. Even more complicated is that the
BoundTo property cannot be set. This limits combos to be bound to character based data. This is
a severe limitation.

The idea is to create custom property records that provide the user interface control that
appears on the builder. Each of the property records define the member (property) that is
maintained through the control. The class record defines which of the properties for the class are
exposed on the interface by selecting the property records to link to or just list the property if a
textbox is an acceptable user interface element.

What do the buttons at the top of the BuilderD builder do?
One of the nice things about working with a builder framework like BuilderD is that someone
else added base functionality to the builder form. In the case of the BuilderD framework, we
have four buttons along the top of the form that extend the builder (see Figure 27). The reason it
shows on all the BuilderD builders is that only one form is used to display the builders, only the
properties exposed changed based on the metadata.

The first button opens up the Class Browser with the class library of the class that the target
object is based on. Naturally you cannot open up the class that the target object is based on since
the target object is instantiated in the designer. Once the Class Browser is opened you can close
the builder and the designer and then edit the class.

Figure 27. All the BuilderD builders will have this toolbar with base functionality since it is defined on the
BuilderDForm class.

The second button (trowel and bricks) brings up optional builders registered in the
BUILDER.DBF file. This allows developers to use both their custom builder specified for the
object, and then have access to any other builder registered, including the native Visual FoxPro
builders. If there are no specific builders, but one “ALL” builder is registered, it will run without
the selection dialog. The fourth button is help (question mark) and brings up the help file
specified in the HelpFile column of table BuilderD and positions it to the topic specified in the
HelpId column. If the class is a Fox Foundation Class (FFC), the help topic in the Visual FoxPro
help file is displayed.

What tools are available to edit Builder metadata? (Example:
WlcBUILDERMETADATAEDITOR.EXE)
The nice thing about the builder technologies built into Visual FoxPro is that they are data
driven. Unfortunately Microsoft did not provide tools to interface with these metadata tables. I
am not sure about you, but while I think the BROWSE window is a nice to look at data, it is not fun
creating and editing data.

The biggest drawback to this technique of opening a table (after hunting it down in the
directory structure), and then browsing it is that it, is typically in an unbuffered state. I am sure I
am the only developer on the planet that makes mistakes as I enter in changes. If it is unbuffered
I have to remember what the original values are for the columns and rows that I entered invalid
or possibly corrupt information. The other big drawbacks are the lack of validation of the
information I am entering in and lack of shortcuts to entering in the details of each column.

So with these drawbacks in mind I set out to simplify my life with builders and created a tool
known as the WLC Builder/Wizard/BuilderD Registration Editor. This tool buffers all changes
to the Builder, Wizard, and BuilderD tables. You can add new records, delete obsolete records,
undo changes to the current registration record, or all the changes you have made, but not yet
saved. There is a checkbox at the top of the form to show or eliminate the deleted registration
records. The About page has version information as well as websites where this tool will be
available when a new version is released.

The Builder table is found on the first page. All the columns for the table are exposed (even
Bitmap that is not used). The grid can be used for navigation. The rest of the columns are free-
form entry. There is a program picker button to use the GetFile dialog and a class picker button
to select a class from a class library to speed up the selection process.

The Wizard table information is found on the second page and is identical in functionality to
the Builder page.

The BuilderD has a class picker like the Builder table. The hardest part of the BuilderD is
noting all the Links (properties and property records that already exist. Noting this pain while
learning the metadata, I came up with a picker dialog (see Figure 28) to ease the selection of
existing property records as well as the actual properties on the class specified. This greatly
simplifies the linking process.

Figure 28. The WLC Builder/Wizard/BuilderD Registration Editor tool simplifies the builder registration
process.

Figure 29. Setting up the Links column of the BuilderD metadata is much easier when you can pick from
the available property records and the actual properties from the target object.

I have an enhancement request list that includes adding search and filter capabilities in a
future version.

What about “Property Editors”
Property editors are brand new in Visual FoxPro 9. They are not directly related to the builder
technology, but they act and respond to properties in a similar fashion as a builder. They are
often implemented using the same techniques as a builder, but are not registered in the Builder
Registration tables (BUILDER.DBF and BUILDERD.DBF). The Property Editors are implemented
via the IntelliSense table (FOXCODE.DBF). A Property Editor typically works with one property
for a single object at a time. A regular builder can work with a single property or multiple
properties, for one object or multiple objects.

First I want to show you how a Property Editor works, then explain how it is implemented
inside of the IDE. The Property Editor is accessed on the Property Sheet via the ellipses button
(see highlighted area in Figure 30) next to the property textbox. This button is only available if
the property has a Property Editor registered in FoxCode. Pressing this button will start the
Property Editor per the code implemented in FoxCode. In Figure 30 and Figure 31 I show you
the new Visual FoxPro 9 Anchor property and the related Anchor Editor.

Figure 30. Only properties with a Property Editor have the property ellipses button available to the right of
the property textbox.

There are two Property Editors shipping in the current beta version of Visual FoxPro 9. The
Anchor and Caption properties have editors that the Fox Team developed or contracted. The
Caption property is simply an INPUTBOX(). The Anchor Editor is a sophisticated user interface to
a complex property. This is where Property Editors shine. Like builders, they can provide a
simple user interface or run pure code to set the property to a specific value. The Anchor Editor
has a user interface because the Anchor property has many settings and choices. The Caption
Property Editor is less sophisticated because you are entering in plain text.

Figure 31. The Anchor Editor is an example of a Property Editor and it ships with Visual FoxPro 9.

The implementation is handled by adding “E” records in the FoxCode table. Table 9 shows
the new “E” records added to FoxCode in VFP 9. The trick to get Visual FoxPro to execute a
Property Editor is adding Member Data to the TIP column.

NOTE:
Member Data is also new to Visual FoxPro 9 and works to configure the Property
Sheet for the property. See the “MemberData Extensibility” topic in the Visual
FoxPro 9 Help file for more details on how to set up Member Data.

In this case the “E” record is defining global Member Data for the four properties. Only three
of the records (Anchor, Caption and _memberdata) have script executed (see the blue
highlighted script code in Table 9). The Script attribute for the property defines what code is
executed. It is up to you as the developer to get a reference to the current object, determine the
property if necessary, and set the property via the object reference. Just like regular builders, you
most likely will be using the ASELOBJ() function to get a reference to the object. If your Property
Editor is specific to one property, then you can set the property directly. If the Property Editor is
generic, you might need to pass in a parameter indicating the property you want to change or
determine this programmatically.

NOTE!
The Member Data Editor “E” record is not part of the default VFP 9 install. You need
to run the MemberDataEditor.app without any parameters to have it register itself as
a Property Editor. The Member Data Editor is registered as a builder when you first
install Visual FoxPro 9.

Table 9. The records in VFP’s FoxCode table define the properties with global member data and how
these properties have Property Editors implemented.

Type Abbrev Cmd Tip Case Save Source
E Caption {Capti

onScri
pt}

<VFPData><memberdata name="caption"
type="property" favorites="True" script="DO
(_CODESENSE) WITH
'RunPropertyEditor','','caption'"/></VFPData>

U T RESERVED

E Name {} <VFPData><memberdata name="name"
type="property" favorites="True"/></VFPData>

U T RESERVED

E Value <VFPData><memberdata name="value"
type="property" favorites="True"/></VFPData>

U T RESERVED

E ANCHOR <VFPData><memberdata name="anchor"
type="property" favorites="True" script="do
HOME()+'WIZARDS\AnchorEditor.app'"/>
</VFPData>

U T RESERVED

E _memberdata <VFPData><memberdata name="_memberdata"
type="property" display="_MemberData"
script="do [C:\PROGRAM FILES\MICROSOFT
VISUAL FOXPRO
9\MemberDataEditor.app]"/></VFPData>

(* The Expanded, Data, Timestamp, and UniqueID columns were removed since they do no t have an impact on the implementation)

The Caption Property Editor is an example of how you might build a generic Property Editor.

You can see in Table 9 that the script is:

script="DO (_CODESENSE) WITH 'RunPropertyEditor','','caption'"

You can observe that the FOXCODE.APP file is run and several parameters are passed in.
These parameters are telling FOXCODE.APP to run the generic Property Editor and to display
entry for the Caption property.

The Anchor “E” entry in FoxCode directly runs the ANCHOREDITOR.APP file with no
parameters:

script="do HOME()+'WIZARDS\AnchorEditor.app'"

The Anchor Editor knows it is only working with the Anchor property and does not need any
special parameter to tell it to work with something generic. This entry also shows another
important aspect of the implementation of Property Editors, the script code is evaluated before it
is executed. In this example, the location of the Anchor Editor is located in the
HOME()+’Wizards\’ folder. This is flexible so you can install your Property Editors any where
and VFP will find them.

Standardize the Name property (Example: ApplyNamingStandardsPropertyEditor.prg)
One example of how you can implement a Property Editor is to have it fix your object Name
property to conform to standards (APPLYNAMINGSTANDARDSPROPERTYEDITOR.PRG). I prefer to
stick to industry standards with respect to object names. This means an object name starts with a
three character prefix, followed by a meaningful name. This can be time consuming depending
on the number of objects, and the style the form or class was created. If you drag and drop
objects to the form from the DataEnvironment, then VFP does this for you. If you drag and drop
from the ToolBox or the Forms Control toolbar, you get names like Text1, Text2, and Combo1. I
can quickly set the ControlSource by picking a cursor column. Then I edit the Name property to
match the ControlSource. This allows me to understand the data and what the objects are bound

to without needing to review all the ControlSource properties. As noted earlier this can be
tedious. When the beta of Visual FoxPro 9 rolled out I decided I could take advantage of this
technology to automatically alter the object names to conform to my standards.

The code that follows changes the name. Originally we thought it would be cool to select
several objects and change all the names at once, but the Name property is not available when
multiple objects are selected. If you do not use Hungarian notation for your column and property
names, change the llHungarian variable to .F. and recompile the program.

LOCAL llHungarian, ;
 lnResult, ;
 lcPrefixes, ;
 lnObjects, ;
 lcBaseName, ;
 lcObjectName, ;
 lcBaseClass

DIMENSION laObject[1]

llHungarian = .T.
lnResult = ASELOBJ(laObject)
lcPrefixes = [chk||col||cbo||cmd||cmg||cnt||ctl||cur||cad||cus||dte||edt||frm||] + ;
 [frs||grd||grc||grh||hpl||img||lbl||lin||lst||olb||ole||opt||opg||] + ;
 [pag||pgf||phk||rel||sep||shp||spn||txt||tmr||tbr||xad||xfd||xtb||]

IF lnResult > 0
 lnObjects = ALEN(laObject, 1)

 * The Name property that this Property Editor (PE) works with
 * cannot be selected when multiple objects are selected
 * in the designer. Therefore it might be unnecessary in this
 * PE. We left this infrastructure here since it was created
 * as an example of how you can write these tools.
 FOR lnI = 1 TO lnObjects
 IF LOWER(SUBSTRC(laObject[lnI].Name, 1, 3)) $ lcPrefixes
 * Nothing to do
 ELSE
 IF NOT PEMSTATUS(laObject[lnI],"ControlSource", 5) OR ;
 EMPTY(laObject[lnI].ControlSource)
 lcBaseName = laObject[lnI].Name
 ELSE
 * Need to look for the period delimiter between cursor and fieldname
 * if it exists, otherwise keep on moving with first position of
 * bound object property or variable.
 lnPeriodPosition = RATC(".", laObject[lnI].ControlSource, 1) + 1

 IF llHungarian
 lcBaseName = SUBSTRC(laObject[lnI].ControlSource, lnPeriodPosition + 1)
 ELSE
 lcBaseName = laObject[lnI].ControlSource
 ENDIF
 ENDIF

 lcBaseClass = LOWER(laObject[lnI].BaseClass)

 DO CASE
 *================================
 CASE lcBaseClass = [checkbox]
 lcObjectName = [chk] + lcBaseName

 *================================

 CASE lcBaseClass = [collection]
 lcObjectName = [col] + lcBaseName

 *================================
 CASE lcBaseClass = [combobox]
 lcObjectName = [cbo] + lcBaseName

 *================================
 CASE lcBaseClass = [commandbutton]
 lcObjectName = [cmd] + lcBaseName

* Lots of code cut out here for this whitepaper, see program
* to see all the objects handled.

 *================================
 CASE lcBaseClass = [textbox]
 lcObjectName = [txt] + lcBaseName

 *================================
 CASE lcBaseClass = [timer]
 lcObjectName = [tmr] + lcBaseName

 *================================
 CASE lcBaseClass = [toolbar]
 lcObjectName = [tbr] + lcBaseName

 *================================
 CASE lcBaseClass = [xmladapter]
 lcObjectName = [xad] + lcBaseName

 *================================
 CASE lcBaseClass = [xmlfield]
 lcObjectName = [xfd] + lcBaseName

 *================================
 CASE lcBaseClass = [xmltable]
 lcObjectName = [xtb] + lcBaseName

 *================================
 OTHERWISE
 lcObjectName = [NotHandled] + lcBaseName
 ENDCASE

 laObject[lnI].Name = lcObjectName
 ENDIF
 ENDFOR
ELSE
 * Nothing to do
ENDIF

RETURN

The program grabs a reference to all objects selected. In the case of the Name property, this
will only be one object. If the Name property already has a valid prefix, nothing changes. If the
object has a ControlSource, the object name is based on the ControlSource and Hungarian rules.
If no ControlSource exists, the object name is the current name with a new prefix. The name is
changed when the laObject[lnI].Name = lcObjectName code executes. You must
programmatically change the property.

The implementation is fairly straightforward. First install the program in your favorite tools
folder. You need to edit the “E” record in the FoxCode table mentioned earlier in this section

where the Abbrev column is “Name”. The TIP column metadata needs a script attribute added to
the existing Member Data XML. Here is an example:

<VFPData><memberdata name="name" type="property" favorites="True" script="DO <your
folder here>\ApplyNamingStandardsPropertyEditor.prg"/></VFPData>

Replace the <your folder here> with the folder you install the program. I use an absolute
folder since it is the easiest way to guarantee Visual FoxPro can find it. Relying on relative
pathing or SET PATH could be a problem depending on your environment. When you select the
Name property and press the Property Editor button, the ApplyNamingStandardsPropertyEditor
program will execute and change the Name property accordingly. If Visual FoxPro cannot find
the program an error is thrown.

The biggest advantage of a Property Editor is working with your own custom properties. The
Property Sheet typically has native editors for intrinsic properties and a user interface making the
selection of a property value very easy. These custom properties might be part of your custom
framework, or they could be just for a generic class you created and made available to your team
or the Fox Community.

It might be obvious, but we want to point out that Property Editors are only available at
development time. Visual FoxPro 9 has extended the implementation of IntelliSense to the run-
time, but Property Editor Member Data is specific to defining how the Property Sheet works.
The Property Sheet is not available at run-time, so the Property Editors are not available at run-
time.

BuilderX property editor (Examples: BuilderXPropertyEditor.scx/sct)
Earlier in this whitepaper we address the BuilderX property and how it directs the builder
manager in VFP to run a specific builder for the object. This property requires some settings to
run a specific class. While this is not a problem to set, we created a property editor to ease this
setting.

This property editor demonstrates how you can directly call a form. You only need one row
in the IntelliSense table if you want the property editor globally available for all objects. You
add an Editor record per the specifications found in Table 10. This form will assemble the class
library and class included in BuilderX when you have a class as the builder. This builder can be
extended to handle standard forms and programs.

Figure 32. The BuilderX Property Editor is an example of a Property Editor.

Table 10. The record details in VFP’s FoxCode table to define how the BuilderX property editor is called
globally (you need to substitute the folder in the script with the folder you install the form.

Type Abbrev Cmd Tip Data
E Builderx {} <VFPData><memberdata name="builderx"

type="property" display="builderx" script="DO
FORM
D:\Presentations\SouthwestFox2004\BuildersMade
Easy\Examples\BuilderXPropertyEditor.scx"/></VF
PData>

Logical toggler property editor (Examples: BuilderXPropertyEditor.scx/sct)
One of the features of the VFP Property Sheet I like is the ability to double click on a logical
property and have it toggle the setting from true to false or vise-versa. I have always wanted to
have this available for my custom properties that are logical. With the addition of property
editors in VFP we can easily implement this.

This example demonstrates how you can implement a property editor completely in code in
the IntelliSense table. There is no user interface since all this does is toggle the property setting.
The code that toggles the setting is placed in a script record (S), in the DATA column (see Table
11). Once this record is established you establish an editor record (E) for each logical property
you want defined. In the example defined in Table 11, you specify the logical property in the
ABBREV column, define which script record is called in the CMD column ({WLCLogicalSpt}),
and add the member data to call the generic RunPropertEditor feature of IntelliSense, passing it
the custom property you define in the ABBREV column (replace the <YOUR PROPERTY> text
with the property name in lower case). Now the property editor button is enabled for you custom
logical property and you can double-click on you property in the VFP Property Sheet and have
the same behavior as an intrinsic logical property.

Table 11. The record necessary in VFP’s FoxCode table to define how the logical toggler property editor
is called.

Type Abbrev Cmd Tip Data
S WLCLogicalS

pt
{ } #DEFINE IBOX_CAPTION "Logical Property

Editor"
#DEFINE USER_CANCEL "__usercancelled__"

LPARAMETERS tcProp
LOCAL ARRAY laObjs[1]
LOCAL lcRetVal, lnCnt, loCtl, llDefValue
IF ASELOBJ(laObjs)=0
 IF ASELOBJ(laObjs,1)=0
 RETURN
 ENDIF
ENDIF

llDefValue = IIF(ALEN(laObjs,1)=1,laObjs[1].&tcProp,"")

FOR lnCnt = 1 TO ALEN(laObjs,1)
 loCtl = laObjs[lnCnt]
 IF PEMSTATUS(loCtl, tcProp, 5)
 loCtl.&tcProp = NOT llDefValue
 ENDIF
ENDFOR

E <YOUR
PROPERTY>

{WLCL
ogical
Spt}

<VFPData><memberdata
name="lsecurityenabled"
type="property"
script="DO

Type Abbrev Cmd Tip Data
(_CODESENSE) WITH
'RunPropertyEditor','','<Y
OUR
PROPERTY>'"/></VFPDa
ta>

What third-party builders are available?
The Fox Community is well know for the contributions each individual developer makes when
they share something they have created for themselves and then make it available for other
developers to use and learn from. I am not endorsing any of these builders, just passing along
information on some builders available for free.

WLC ProjectBuilder (Example: CPROJECTHOOK5::FRMPROJECTBUILDER)
The WLC Project Builder from White Light Computing (www.whitelightcomputing.com) is a
combination of the VFP Project Build dialog, the Build Version dialog and the Project
Information dialog. How many times have you made that last gold production build and find out
that you forgot to set Debug Code off in the Project Information dialog resulting in a 50
megabyte executable on the 500 CDs that were just cut? This dialog brings all the compiler
settings together so you can build the executable with all the information in front of you at one
time.

It is important to note that there are several features in the WLC Project Builder (see Figure
33) that work in conjunction with the WLC ProjectHook (included in the same class library), but
it is not required. In fact, there is no requirement for any projecthook at all. The only requirement
is that one project (or more) must be open.

Figure 33. The WLC Project Builder in action for a project using the WLC ProjectHook.

WLC Label Builder (Example: WLCBUILDERS.VCX::FRMLABELBUILDER)
The WLC Label Builder was developed out of pure frustration to line up labels and have a label
named almost identical to the entry object that it is associated with. This simple builder lines up
two objects selected together (of which one is a label). If there are two objects it will name the
label object “lbl” followed by any text in the name of the other object after the first three
characters. This means the builder will rename a label named “Lblbase2” selected with a textbox
named “txtLastName” will rename the label “lblLastName”. Other common properties are
exposed and there is a developer tool font enforcer (our standard is Tahoma 8).

The labels can be lined up next to the object or on top of the object. If you line up a label and
a shape object, the label object is place on top of the shape and is given the BackStyle of Opaque.

Figure 34. The WLC Label Builder eliminates frustration lining up labels with data entry objects and
enforces development naming conventions..

Stonefield Grid Builder (Example: DEVTOOLS.ZIP)
Have I mentioned that Doug Hennig creates some of the best tools around? Well if I have not, let
me mention it one more time. Doug takes the VFP native grid builder and makes it do one simple
little thing better, sizing columns to the size of the data. Doug explains in detail all that it took to
do this in his whitepaper that accompanies the source code for this upgrade. Simple and very
useful.

Stonefield RI Builder (Example: DEVTOOLS.ZIP)
Doug Hennig’s Stonefield RI builder was the first builder I downloaded and the one I used the
most often until recently. Doug has taken the VFP native RI Builder, fixed some bugs, added
some capabilities to integrate Steve Sawyer’s lean and mean NEWRI.PRG code, and made a
respectable RI Builder that Microsoft should have shipped two versions ago. If you are using the
VFP RI Builder you will be very familiar with this builder since they look identical. The
resulting code can look very different (in a good way). This one is a must have for developers
writing applications that use VFP tables and database containers, second in importance only to
the Stonefield Database Toolkit.

Tax RIBuilder (Example: TAXRIBUILDER.ZIP)
This shareware builder was written by Walter Meetzer is available on the
www.UniversalThread.com. The claim to fame is that it creates faster and more compact
referential integrity code. It also claims to provide more flexibility maintaining tables doing
transactions that normally violate the referential integrity. Rules that I have not seen in other
referential integrity builders that this one does handle is the Force Blank when deleting, and the
Allow Blank when inserting. Details are provided in a Readme.txt file.

Mark McCasland’s CursorAdapter Builder (Example: CABUILDER.ZIP)

This is a brand new builder and a work in progress as of the writing of this whitepaper. Mark has
jumped on the new CursorAdapter class and created a builder that will connect to a VFP
database container, SQL Server, or an Oracle database and create a Cursor Adapter for each
table. Not only that, it will generate code for Insert, Update and Deletes. All the generated
CursorAdapters are stored in a class library, subclassed from your specific CursorAdapter
baseclass. If you are moving to VFP 8 and are looking at the CursorAdapter technology, this
builder is worth a look for sure. This builder is available on www.UniversalThread.com.

ProjBuilder (Example: PROJBUILDER.ZIP)
This builder was developed by Erik Moore (well known for his numerous tool contributions to
the Fox Community) and is available on www.UniversalThread.com. It is a replacement for the
Visual FoxPro Build Dialog with additional functionality that includes saving the path that the
executable was compiled to for each project, which saves a time locating the directory each time.
This builder handles some of the mundane tasks we need to perform before that gold build like
packing class libraries and cleaning the printer driver information from reports. Erik has
numerous features for development of COM servers including bouncing IIS and COM+
applications so builds can complete successfully. All settings are saved to the Windows registry
so they do not have to be established each time you build.

Stored Procedure Builder (Example: SPBUILDER.ZIP)
This builder was developed by Erik Moore and is available on www.UniversalThread.com. This
builder generates stored procedures in a SQL Server database to insert new records, update and
deleting existing ones, retrieving primary keys, getting all records from a table, and getting a
zero record set from a table. This builder generates a script file that can be saved and run later, or
can generate the stored procedures directly in the database. The builder requires SQL Server 7.0
or later and has to be run on a computer that has SQL Server loaded because it requires SQL
DMO which is used to manipulate the database.

What third-party builder resources are available to developers?
I did find it interesting when I started to research builder technology that there were very few
resources available on this topic, but it matches the response I typically get during discussions
with Fox developers. There are several excellent resources available that I can recommend
without hesitation.

The first is Doug Hennig’s whitepaper on developer tools. Doug wrote this many years ago,
yet is still is one of the leading sources of builder information. This whitepaper is available from
www.Stonefield.com.

If you do not own a copy of the Hacker’s Guide to Visual FoxPro 7.0 available form
www.Hentzenwerke.com, make sure you put this paper down and head over and buy a copy.
This is the bible of Visual FoxPro in my opinion and it has a terrific section on builders that
Steven Black contributed. This is top gun information from a leading authority.

Speaking of Steve Black, the Fox Wiki (www.fox.wikis.com) has several topics on builders
that I found useful over the years. The www.UniversalThread.com has one of the single largest
download collections around for Fox developers. There are several builders that were mentioned
earlier in this whitepaper that are available from this site.

There are numerous articles in FoxTalk (mostly written by Doug Hennig) and FoxPro
Advisor. You can order back copies and CD-ROMs from both publications.

What issues might I face with builder technology?
There is one specific gotcha that I want to mention before closing this whitepaper. If no specific
builder registered in the builder table (Builder.dbf) and there is only one “ALL” builder, the
“ALL” builder is run without any prompting. This can be a serious problem if the builder is not
written to make some validation checks you could find the builder behavior undesirable. I
recommend that you write at least two “All” builders so you are forced to pick one builder when
selecting an object that does not have a builder registered for its type.

Conclusion
Visual FoxPro 3.0 was introduced back in 1995 in San Diego to a couple thousand developers at
DevCon. At this conference I saw a session on builders tag teamed by John Alden and David
Anderson. It was the best session of the conference and really inspired me at the time. I saw a lot
of possibilities with this technology. Unfortunately I did not act on the inspiration. At another
conference Doug Hennig did a spectacular session on developer tools which included the builder
technology. Again I was inspired, and again I did not act upon the inspiration. I later saw an
opportunity to implement a bunch of builders for Visual MaxFrame v4.0 for my team, but was
too busy with my regular job duties to do anything about it. Finally I saw the light yet one more
time when I started writing applications using Visual FoxExpress which is littered with useful
builders. I wanted to write a chapter in MegaFox on builders, but shipping was a feature.

The bug has bitten me and I have finally done something with my inspiration. I hope you can
learn from my mistakes and react to any inspiration this whitepaper might have provided to you.
I also look forward to feedback on the types of builders you create and hope that you will make
them available to the rest of the Fox Community.

Special Thanks
I want to thank the user groups that put up with the rehearsals to insure that this presentation was
refined for primetime initially at the Essential Fox conference. The Grand Rapids Area Fox User
Group and the Detroit Area Fox User Group members provided excellent feedback to me and I
really appreciate the frank and honest evaluations that were provided.

Copyright
Copyright © 2002-2004 Richard A. Schummer. All Worldwide Rights Reserved

Author Profile
Rick Schummer is the President and lead geek at his company White Light Computing, Inc., headquartered in southeast
Michigan, USA. He prides himself in guiding his customer’s Information Technology investment toward success. After hours you
might find him creating developer tools that improve developer productivity, or writing articles for his favorite Fox periodicals
and user group newsletters. Rick is a co-author of Deploying Visual FoxPro Solutions, MegaFox: 1002 Things You Wanted To
Know About Extending Visual FoxPro, and 1001 Things You Always Wanted to Know About Visual FoxPro. He is a founding
member and Secretary of the Detroit Area Fox User Group (DAFUG) and a regular presenter at user groups in North America.
Rick has enjoyed presenting at GLGDW 2000-2003, Essential Fox 2002-2004, VFE DevCon2K2, and the Southwest Fox 2004
conference.
raschummer@whitelightcomputing.com, rick@rickschummer.com,
http://www.whitelightcomputing.com and http://www.rickschummer.com

